工程,项目,工程管理,项目管理,国际工程,项目经理,房地产,融资,可行性研究,总承包,信息化,代建制,招投标,设计管理,进度,成本,风险,质量,概预算,造价,合同管理,施工组织,监理,工程咨询,保险,劳务,FIDIC,索赔,BOT,PPP,PMC 中国工程管理网,关注工程的策划,建设与运营。 工程,项目,工程管理,项目管理,国际工程,项目经理,房地产,融资,可行性研究,总承包,信息化,代建制,招投标,设计管理,进度,成本,风险,质量,概预算,造价,合同管理,施工组织,监理,工程咨询,保险,劳务,FIDIC,索赔,BOT,PPP,PMC 中国工程管理网,关注工程的策划,建设与运营。
打印本文 打印本文  关闭窗口 关闭窗口  
北京新建地铁通风空调系统模拟分析
作者:常 军  文章来源:中国论文下载中心  点击数  更新时间:2013/7/4 20:52:34  文章录入:web13741  责任编辑:web13741

区通风空调机房,内设组合式空调箱及回/排风机,独立负担车站公共区的通风空调及事故排烟;站端设活塞风井(活塞风井与机械风井合用),风井内设置供区间隧道专用的TVF风机及组合风阀,独立负担区间隧道的通风及事故排烟。此方案目前应用于上海、南京、广州等地铁通风空调系统。系统原理见图2、3。

  

  

  3 数值模拟

  3·1 物理模型

  地铁区间隧道内空气流动是三维可压缩流体非恒定紊流。由于隧道长度远大于隧道的断面几何尺寸,且隧道断面上气流速度和压强分布比较均匀。为简化计算,可将地铁隧道、车站内空气流动简化为以当量直径de作为特征尺寸的、以断面上气流各要素取平均值作为变量的圆管内气流一维非恒定流动[5]。由于隧道内气流速度较低,空气的Ma小于0.3[6],且温度变化较小,可将隧道内的空气流动近似为不可压缩流体流动。因此,隧道内空气的流动与传热,可简化为不可压缩流体在圆管内一维非恒定流动与传热。

  3·2 模拟计算方法

  3·2·1 初始风向设置

  区间风向设置:由陶然亭→菜市口→宣武门(上行区间方向)为正向;迂回风道风向:下行→上行为正向;出入口及风井风向:由室内→室外大气为正向;如模拟计算值为“+”,与初始设置方向一致;否则反向。

  3·2·2 初始条件及边界条件

  假定模拟计算边界条件:隧道峒口、风井入口、车站出入口压力边界值为0;瞬时所有节点汇总至一个节点的总空气流量等于0。假定初始条件:各点的压力值均设为0。

  3·2·3 其他原则

  计算中采用叠代法求解方程组,调整节点压力进行计算。模拟计算的时间随节点图的大小和复杂程度而定。模拟正常工况,列车从陶然亭站到宣武门站运行时间为263s,将模拟运行时间定为1200s(约为5个运行周期)可以得出合理的数据。

  3·3 建立节点图

  本次模拟对象为:陶然亭-菜市口-宣武门,三站两区间。根据国际上对地铁环境系统分析的大量实践证明,列车模拟运行于由3个车站、10座风井和11个通风区段组成的系统,其计算结果付诸于地铁实体系统,则具有可行性和有效性[7]。

  环控模拟之前,首先建立反映隧道的布置及隧道交接点的特性,反映风井、交叉道及折返区位置的一个几何模型,即交点图[9]。这是计算的基础,其中组成元素包括节点(node)、节(section)、段(segment)、子段(subsegment)、风井(ventshaftsegment)和车站/区间(station/tunnelsegment)等。各个元素都需要有对应的参数,如长度、坡度、断面、周长、阻力系数等。节点通过各段和子段相互连接,气流通过节点流向节点。

  3·4 输入数据

  模拟需输入隧道及站轨布置、列车营运数据、客流资料、隧道外界气象参数及土壤热工特性、列车数据等。主要数据如下:

  3·4·1 气象数据

  地铁空调计算采用的室外计算参数为近20年夏季地下铁道晚高峰负荷时平均每年不保证30h的干(湿)球温度[10]。室外气象参数:晚高峰室外计算干球温度为32.0℃;晚高峰室外计算相对湿度为65%。

  3·4·2 区间隧道参数

  区间隧道参数如表1所示。

  

  3·4·3 土壤热工特性

  土壤导热系数λ为1·367W/(m·k),导温系数α为7.74×10-7m2/s,土壤温度为13℃。

  3·4·4 客流数据

  客流数据采用远期2032年晚高峰小时模拟车站

上一页  [1] [2] [3] [4] [5]  下一页

打印本文 打印本文  关闭窗口 关闭窗口